The Bern3D-LPX climate-carbon cycle model: Recent developments and applications Raphael Roth, University of Bern

KUP seminar, 13. May 2013

Coauthors:

Postdocs:

Marco Steinacher, Stefan Ritz, Renato Spahni, Johannes Rempfer, Sonja Keel

PhD students:

Benjamin Stocker, Sibylle Zürcher

Master/Bachelor students:

Patrick Pfister, Roman Schmid, Basil Neff, Julia Brugger

Leaders:

Fortunat Joos, Thomas Stocker

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

outline

Part 1: Introduction

- What is the Bern3D-LPX model?
- Who are the people working with it? And how?

Part 2: Recent examples of application

- Paleo: Reconstruction of past ¹⁴C production
- Present/Future: Terrestrial GHG feedbacks
- Future: Multi-target study

Part 3: Outlook

Bern3D variable grid

Part 4: Summary

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

The history of the Bern carbon-cycle model

		model components:			
model name	IPCC	atm	sea <mark>i</mark> ce	ocean	land
Bern	SAR	0D		multi-box (HILDA)	4-box biosphere
BernCC-LPJ	TAR	0D		multi-box (HILDA)	DGVM (LPJ)
Bern2.5D-LPJ	AR4	1D EBM	1D	zonally averaged (3 basins)	DGVM (LPJ)
Bern3D-LPX	AR5	2D EBM	2D	3D (GOLDSTEIN)	DGVM (LPX)

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

The history of the Bern carbon-cycle model

		model components:			
model name	IPCC	atm	sea <mark>i</mark> ce	ocean	land
Bern	SAR	0D		multi-box (HILDA)	4-box biosphere
BernCC-LPJ	TAR	0D		multi-box (HILDA)	DGVM (LPJ)
Bern2.5D-LPJ	AR4	1D EBM	1D	zonally averaged (3 basins)	DGVM (LPJ)
Bern3D-LPX	AR5	2D EBM	2D	3D (GOLDSTEIN)	DGVM (LPX)

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

What is the Bern3D-LPX model?

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

The Bern3D ocean/atmosphere model

- 36x36x32 boxes \rightarrow focus on large scale response (i.e. basin-scale)
- Frictional-geostrophic balance with velocity relaxation \rightarrow not an OGCM
- OCMIP2-type foodweb model, extended with Fe and SiO cycle
- Sediment diagenesis model
- 2D EBM atmosphere \rightarrow no dynamics, prescribed winds etc

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

The LPJ/LPX global dynamic vegetation model

- Independent cells \rightarrow no need to simulate global domain
- Land-classes : natural, wetland, cropland, buried...
- Plant functional types (PFTs)
- C & N pools : Vegetation, litter, soil, products...
- Variable resolution: 2.5° x 3.75°, 1° x 1°, 0.5° x 0.5° depending on application

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

The LPJ/LPX global dynamic vegetation model

"input: climate, $pCO_2 \rightarrow output$: NEP, eN_2O , eCH_4 , albedo"

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Coupled setup

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

The Bern3D-LPX code

*Fortran code incl. comments and empty lines

Component	Kilo lines of code (KLOC)*	
Bern3D (OCN+BGC+EBM)	48	
Sediment	35	
LPX	41	
TOTAL	124	\rightarrow version control needed
IPSL: ~	340	
CESM: ~	850	
Linux Kernel: ~	16'000	
Windows XP: ~	45'000	

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

The Bern3D-LPX group: Who is who?

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Applications of the Bern3D-LPX model

PALEO

Pre-Quaternary experiments Glacial cycles Holocene Last Millennium

PRESENT

Understanding the Earth system Ocean tracer assimilation Novel tracers

FUTURE

Global warming scenarios Allowable emissions GHG feedbacks

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Applications of the Bern3D-LPX model

Examples of application

PALEO

Pre-Quaternary experiments Glacial cycles Holocene Last Millennium

PRESENT

Understanding the Earth system Ocean tracer assimilation Novel tracers

FUTURE

Global warming scenarios Allowable emissions GHG feedbacks 1) Radiocarbon production *Roth and Joos, 2013, CPD*

- 2) Terrestrial GHG feedbacks Stocker *et al., 2013, Nature CC*
- 3) Multi-target study Steinacher et al., 2013, Nature (accepted)

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Goal:

Reconstruct the Holocene ¹⁴C production rate and compare to earlier box-model reconstructions. Use it as a solar activity proxy.

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Graphics in this section are from *Roth and Joos, CPD, 2013*

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

the atmospheric budget equation for radiocarbon:

assumption: well mixed atmosphere!

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Conclusions:

- •Influence of climate on Q is rather small except for the early Holocene
- •Q is higher than in previous studies (~1.7 atoms/cm²/s)
- •Interhemispheric ¹⁴C gradient does makes a difference

Conclusions:

- •Influence of climate on Q is rather small except for the early Holocene
- •Q is higher than in previous studies (~1.7 atoms/cm²/s)
- •Interhemispheric ¹⁴C gradient does makes a difference

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Question:

• What is the magnitude of the land feedback, how will it evolve in future scenarios?

• What is the contribution of changing N_2O and CH_4 emissions from the land-biosphere to the total feedback.

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Change in carbon density w.r.t. 1765 AD

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

All graphics in this section are from *Stocker et al., 2013, Nature Climate Change*

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Control: Landbiosphere sees neither changes in climate nor pCO_2

$$\rightarrow \Delta C, eN_2O, eCH_4, albedo \rightarrow RF_{ctrl} \rightarrow T_{ctrl}$$

Then coupled runs, e.g.

CT : Landbiosphere sees changes in climate $\& pCO_2$

 $\rightarrow \Delta C$, eN_2O , eCH_4 , albedo $\rightarrow RF_{CT} \rightarrow T_{CT}$

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Control: Landbiosphere sees neither changes in climate nor pCO_2

$$\rightarrow \Delta C, eN_2O, eCH_4, albedo \rightarrow RF_{ctrl} \rightarrow T_{ctrl}$$

Then coupled runs, e.g.

CT : Landbiosphere sees changes in climate $\& pCO_2$

 $\rightarrow \Delta C$, eN_2O , eCH_4 , albedo $\rightarrow RF_{CT} \rightarrow T_{CT}$

Feedback: Given an <u>external</u> forcing, what is the response of the climate with and without a certain component.

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Conclusions:

- The efficiency of the Bern3D-LPX allows to perform an extensive sensitivity analysis with 200+ simulations
- Total terrestrial feedback currently ~0, but increases in the future
- N₂O and CH₄ feedbacks are rather small, but always positive.
- The representation of the biogeochemical effect of CO_2 (i.e. fertilization) is crucial (\rightarrow talk last monday)

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

All graphics in this section are from *Steinacher et al., 2013, Nature (accepted)*

Question:

•How do the allowable CO₂ emission change when considering multiple targets (instead of only temperature targets)

Target	Target Set Number			mber	Units
	1	2	3	4	
ΔSAT	1.5	2	3	4	$^{\circ}\mathrm{C}$
SSLR	20	40	60	80	cm
OA_{SO}	5	10	25	50	% of area $> 50^{\circ}$ S
$OA_{\Omega>3}$	60	75	90	100	% of area in 1800
$A_{\rm cNPP}$	5	10	20	30	% of crop area in 2005
C_{cSoil}	5	10	20	30	% of soil carbon in 2005

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Emissions up to 2011: 347 GtC

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Allowable CO₂ emissions (1750-2100) to meet the targets

(66% probability of staying below targets up to year 2100)

Conclusions

 Including additional targets along with the conventional global temperature limits can considerably reduce the allowable CO₂ emissions

• CO_2 targets should be treated separately from other greenhouse gases in policy frameworks.

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Outlook

Bern3D ocean model with variable horizontal resolution

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Outlook

Bern3D classic

south pole

Fractional sea-ice cover

new Bern3D

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics

Summary

• ~ 20 years of evolution from the original "Bern" - model to Bern3D-LPX

• The (ocean) model is still a coarse-resolution model \rightarrow large-scale response is of interest.

 Model development and application goes in parallel by the same people.

• Bern3D-LPX is an ideal tool both for science and education (e.g. Master thesis) to asses all kind of questions both in the past and the future.

• The development of the model is ongoing.

Raphael Roth, University of Bern, Physics Institute, Climate and Environmental Physics