Modeling forcings and responses in the global carbon cycle-climate system: Past, present and future

Raphael Roth, University of Bern

Ph.D. exam talk

12. December

2013

PhD overview

PhD overview

Motivation

Introduction

Motivation

Observations show:

Strong correlation between climate and atmospheric CO₂.

- \rightarrow Causality? Problematic to state from observations alone.
- \rightarrow Process-based understanding of the carbon cycle-climate system needed.

Identified interactions:

I) CO_2 influences climate through absorption of outgoing LW radiation. \rightarrow *carbon-climate feedback*

II) Climate influences CO_2 through interactions with the global carbon cycle. \rightarrow *climate-carbon feedback*

within the carbon cycle:

III) CO_2 influences carbon cycle (plant fertilization, oceanic uptake, ...). \rightarrow carbon-concentration feedback

Introduction

The global carbon cycle (pre-industrial)

Introduction

Bern3D-LPJ model

Volcanic CO₂

Introduction

Bern3D-LPJ model

Volcanic CO₂

Fractionation of ¹³C & ¹⁴C:

- during air-sea gas-exchange
- during photosynthesis

(seawater C is "heavier" than atmospheric C) (biomass C is "lighter" than atmospheric C)

Fractionation of ¹³C & ¹⁴C:

- during air-sea gas-exchange
- during photosynthesis

(seawater C is "heavier" than atmospheric C) (biomass C is "lighter" than atmospheric C)

$$\delta^{13}C = \left(\frac{{}^{13}R}{{}^{13}R_{std}} - 1\right) \cdot 1000\%$$

$$A^{14}C = \left(\frac{{}^{14}R_{N}}{{}^{14}R_{std}} - 1\right) \cdot 1000\%$$

$$\Delta^{14}C = \left(\frac{{}^{14}R_{N}}{{}^{14}R_{std}} - 1\right) \cdot 1000\%$$

$$A^{14}C = \left(\frac{{}^{14}R_{N}}{{}^{14}R_{std}} - 1\right) \cdot 1000\%$$

$$A^{14}C = \left(\frac{{}^{14}R_{N}}{{}^{14}R_{std}} - 1\right) \cdot 1000\%$$

Introduction

Bern3D-LPJ model

"Earth System Model of Intermediate Complexity (EMIC)"

Introduction

Bern3D-LPJ model

Idealized application: carbon pulse release

Idealized application: carbon pulse release

Idealized application: carbon pulse release

Summary (introduction & Bern3D-LPJ)

• The climate and carbon cycle are tightly coupled (positive feedback in both directions).

• Carbon isotopes can be measured and give additional constraints on past carbon cycle changes.

• Processes that are understood can be incorporated into models in order to predict future changes in the Earth system.

• Redistribution of carbon within the atmosphere-ocean-land system is a result of a complex interplay between physical and biogeochemical process involving many different timescales.

• Isotopic perturbation "decay" much faster than CO₂ perturbations.

```
Part 1: Volcanic CO
```


Bern3D-LPJ model

Volcanic CO,

Part 1: Volcanic CO,

Part 1: Volcanic CO,

Question:

What is the impact of this hypothesized CO_2 emission on the carbon cycle? Can it be falsified?

Introduction

Volcanic CO₂

Part 1: Volcanic CO₂

Introduction

Bern3D-LPJ model

Volcanic CO,

Part 1: Volcanic CO,

Introduction

Bern3D-LPJ model

Part 1: Volcanic CO₂

Other major driver for early-to-mid Holocene carbon cycle dynamics? \rightarrow landbiosphere growth

Introduction

Bern3D-LPJ model

Summary (part 1)

- Causes on glacial interglacial changes of CO_2 is not yet resolved.
- Huybers & Langmuir (2009) proposed a volcanic feedback due to NH icesheet retreat.
- Applied to the Bern3D, the hypothesized emission scenarios result in a \sim 46 (13 to 142) ppm increase in CO₂ peaking in the early Holocene.
- Comparison with multiple oceanic and atmospheric proxy records points to a possible small to intermediate role for the proposed feedback.
- Uncertainties remain as carbon isotope proxies do not serve as a strong constraint in this case (volcanic signal is weak).

Part 2: ¹⁴C production and solar activity

possible drivers for atmospheric Δ^{14} C:

I) change in exchange fluxes (climate and/or carbon cycle changes)

II) change in atmospheric production

Experimental setup:

- LGM-to-present simulations
 - \rightarrow first 10 kyr to get initial conditions ("spin up").
- Use a broad set of proxy data to constrain the model
 - → CO_2 , hemispheric $\Delta^{14}C$, radiative forcing, sealevel, icesheets, orbital parameters, landuse area, fossil fuel emission, ...
- Monte-Carlo setup to estimate error caused by uncertainty in Δ^{14} C data.

Experimental setup:

- LGM-to-present simulations
 - \rightarrow first 10 kyr to get initial conditions ("spin up").
- Use a broad set of proxy data to constrain the model
 - → CO_2 , hemispheric $\Delta^{14}C$, radiative forcing, sealevel, icesheets, orbital parameters, landuse area, fossil fuel emission, ...
- Monte-Carlo setup to estimate error caused by uncertainty in Δ^{14} C data.

Atmospheric budget equation for ¹⁴C:

$$Q(t) = \frac{I_{\text{atm,data}}(t)}{\tau} + \frac{dI_{\text{atm,data}}(t)}{dt} + {}^{14}F_{\text{budget}}(t) \qquad \rightarrow \text{ atmospheric change} \\ + \frac{I_{\text{ocn,model}}(t)}{\tau} + \frac{dI_{\text{ocn,model}}(t)}{dt} + \frac{\Delta I_{\text{ocn,data-model}}(t = t_0)}{\tau} \\ + \frac{I_{\text{sed,model}}(t)}{\tau} + \frac{dI_{\text{sed,model}}(t)}{dt} + {}^{14}F_{\text{burial}}(t) \\ + \frac{I_{\text{Ind,model}}(t)}{\tau} + \frac{dI_{\text{Ind,model}}(t)}{dt} + \frac{\Delta I_{\text{Ind,data-model}}(t = t_0)}{\tau} \\ \rightarrow \text{ air-sea flux} \\ \rightarrow \text{ air-biosphere flux} \end{cases}$$

Introduction

Bern3D-LPJ model

Volcanic CO₂

Introduction

Bern3D-LPJ model

Volcanic CO₂

Introduction

Bern3D-LPJ model

Volcanic CO₂

Bern3D-LPJ model

Volcanic CO₂

Bern3D-LPJ model

Part 2: ¹⁴C production and solar activity

¹⁴C production and solar activity

Bern3D-LPJ model

Introduction

Volcanic CO₂

Results of particle simulations (e.g., Masarik and Beer, 1999, 2009) show:

Introduction Berr

Bern3D-LPJ model

Volcanic CO₂

Introduction

Bern3D-LPJ model

Bern3D-LPJ model

Volcanic CO₂

Part 2: ¹⁴C production and solar activity

Ongoing collaborative effort (Switzerland, France, Finland)

State-of-the-art 3000 yr solar activity (sunspot number) reconstruction with

- consistent error treatment through the entire chain of models
- no ad-hoc normalizations

Part 2: ¹⁴C production and solar activity

Ongoing collaborative effort (Switzerland, France, Finland)

State-of-the-art 3000 yr solar activity (sunspot number) reconstruction with

- consistent error treatment through the entire chain of models
- no ad-hoc normalizations

\rightarrow Results suggest bi-modality in the state of the solar dynamo

Summary (part 2)

• Past Δ^{14} C of atmospheric CO₂ is a valuable proxy for ¹⁴C production and changes in the carbon cycle-climate system.

• Using a carbon cycle-climate model, the production signal can be separated from the climate signal.

• Our inferred modern ¹⁴C production rate (~1.7 atoms/cm²/s) links nicely to estimates from new models of cosmogenic particle simulations.

• Contemporary solar activity seems high compared to the past 3000 years, but higher states of solar activity existed earlier in the Holocene.

• A combination of new state-of-the art reconstructions reveals a bi-modality in the distribution of solar activity.

Thank you for your attention!

