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Abstract

In this report, Big Bang nucleosynthesis calculations are used to test the
impact of additional neutrino flavors on primordial abundances of light ele-
ments. Especially primordial 4He is a sensitive probe for counting the neu-
trino number, since nearly all free neutrons were bound to this nucleus while
the universe cooled down.

1 Introduction

At the time when Einstein developed his theory on General Relativity, the
framework for modern cosmology was born. Friedmann’s solution to the field
equation, the Friedmann equations (see section 2.1), describe an adiabatically
expanding universe. Starting from an extremely hot quark-gluon plasma,
temperature decreases quickly due to fast space expansion. After about 3
seconds, when only protons and neutrons existed, one of the most important
process occurred: the synthesis of nuclei. The results of these process, the
primordial element abundances, strongly affected further cosmic evolution
and can still be observed in old stars and gas clouds.

Big Bang nucleosynthesis (BBN, or SBBN for standard BBN) is one of
the most sensitive probes available for physics going beyond the standard
model. In this case, ”standard model” means specifically that we consider
exactly 3 neutrino families (Nν = 3). The concordance between numerical
predictions and observational data of light element abundances like 1H, 2H,
3H, 3He, 4He and 7Li reflects the overall success of the standard big bang
cosmology. Due to the robustness of BBN, changes from the standard model
are likely to upset this agreement and are therefore tightly constrained.

The 4He abundance, in particular, is commonly used as a sensitive probe
of new physics (see e.g. [5] - [9]). This is because nearly all free neutrons
end up in 4He during BBN. The neutron number, respectively the neutron-
to-proton ratio, is very sensitive to the temperature at the so-called weak
freeze-out, which in turn depends on the number of neutrino families Nν .
This is due to the competition between weak reaction rates and Hubble
expansion, see section 2.2.

On the other hand, BBN also depends on the baryon number density η =
nb/nγ. Therefore, a meaningful limit on Nν requires both a lower bound to η
(WMAP data are commonly used) and an upper bound to the primordial 4He
mass fraction. The method for neutrino number counting will be discussed
more precisely in section 4. For all these numerical calculations, a full nuclear
network code was used, which has been modified for this purpose.
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2 Physics of the expansion

2.1 Evolution of space-time in GR

Standard Big Bang cosmology assumes spatial isotropy and homogeneity,
the so-called ’Cosmological Principle’ (Milne 1935). This is not only a theo-
retical construct, since observations in the last few decades provided empir-
ical justifications for this assumption. Despite small temperature/density
- inhomogeneities found in the cosmic microwave background (CMB), and
the filament structure in galaxy distribution, the universe conforms to this
postulate when the relevant scales are considered (observational universe =
several thousand Mpc).

For an isotropic and homogeneous evolving space-time with co-moving
spherical coordinates, the distance between two points is given by the Robertson-
Walker metric

ds2 = gµνdxµdxν = dt2 − R2 (t)

[
dr2

1 − kr2
+ r2

(
dΘ2 + sin2 ΘdΦ2

)
]

, (1)

where R(t) denotes the cosmic scale factor and k the algebraic sign of the
curvature. By making use of Einstein’s field equation, connecting space-time
geometry (gµν and Rµν) with the energy-momentum tensor Tµν ,

Rµν −
1

2
gµνR + Λgµν = −8πG

c4
Tµν , (2)

Friedmann succeeded in deriving 3 equations of motion for R(t); The famous
Friedmann-Lemaitre equations are:

R̈ = − 4π

3c2
(ρǫ + 3P )GR +

1

3c2
ΛR , (3)

Ṙ

R

2

= H (t)2 =
8πG

3c2
ρǫ −

kc2

R2
+

1

3c2
Λ , (4)

d(ρǫR
3)

dt
+ P

dR3

dt
= 0 . (5)

Here, ρǫ denotes the total relativistic energy density ρǫ = u + ρc2 and ρ the
mass density. For the case of a not vanishing Ṙ, only 2 of these equations
are independent. The cosmological constant Λ, acting like an integration
constant in Eq. (2), can also be interpreted as an energy density ρΛ = Λ

8πG
.

This cosmological constant, nowadays assumed to be small but non-zero,
disconnects geometry and dynamics of the so-called world-models, resulting
from Eq. (3) - (5). Depending on the choice of parameters, many world
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models are possible. Eq. (4) can be interpreted in the non-relativistic limit
as an energy conversation law, Eq. (5) as the first law of thermodynamics,
dQ = dU + PdV = 0, in an adiabatic expansion of an ultra-relativistic gas
(chemical potential µ = 0 for all particles).

In the non-relativistic limit E/m ≪ 1 (matter dominated epoch), Eq.
(5) leads to ρ ∝ R−3, reflecting the dilution of density due to the expanding
volume of a sphere. In the relativistic case (mc2 ≪ kT ), applicable to the
early universe, the pressure reads P = ρǫ

3
and we get an additional R−1

because of the redshift of momentum by expansion. This leads to

ρǫR
4 = const . (6)

Considering zero curvature, this means Ṙ = R−1 and therefore

R(t) = αt
1

2 . (7)

Immediately after the big bang, when kT & 200 MeV, quarks and gluons are
believed to be asymptotically free in a very dense plasma. With the ongoing
expansion, quarks soon combine to baryons. Since particle-antiparticle pairs
can be created by collision of 2 photons, all particles exist with mc2 ≪ kT .
With temperatures ∼ 1 MeV, photons, nucleons, electrons, positrons and
neutrinos (+antiparticles) are in thermal equilibrium due to reactions like
γ + γ ⇋ e+ + e−, νe + νe ⇋ e+ + e−, e− + p ⇋ n + νe and e+ + n ⇋ p + ν̄e,
leading to a chemical equilibrium between the participants. This is the point
where our calculations set in.

2.2 Derivation of the relevant astrophysical parame-

ters

Here follows a derivation of the necessary relations describing the evolution
of temperature, density etc. during the expansion shortly after big bang. For
more details see [1], [2] and [4].

For an ultra-relativistic gas, pressure behaves like

P =
1

3
ρǫ =

1

3
u =

1

3

g

2
aT 4 . (8)

The total statistical weight g can be expressed as a sum of the gi from the
participating particles (gγ = ge+ = ge− = 2 and gν = gν̄ = 1).

g =
∑

bosons

gi +
7

8

∑

fermions

gi = 2 +
7

8
· (2 + 2 + 1 + 1 + 1 + 1 + 1 + 1) =

43

4
(9)
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At this point, the expression for the standard case (Nν = 3) will be expanded
to hypothetical additional (light) neutrino families ∆Nν . So Nν = 3 + ∆Nν .
In contrast to the standard derivation that can be found in common liter-
ature, this variable ∆Nν will be carried on until we find the final relations.
This will then be our ”tool” for studying the influence of neutrino number
on BBN. Applying this notation leads to

g =
43

4
+

7

8
∆Nν · (1 + 1) =

43

4
+

7

4
∆Nν . (10)

The nucleons do not appear in this expression because mnucleonsc
2 ≫ kT ,

so they obey Maxwell-Boltzmann statistics and therefore P = nkT . Since
this term is linear in T , it is negligible for high temperatures. The elec-
tron/positron (µ̄e+ = ¯µe− = 0) reactions with nucleons lead to µ̄n = µ̄p. This
can be used to express the neutron to proton ratio

nn

np
≡ n

p
= exp

(
∆mc2

kT

)

, (11)

where ∆m denotes the neutron-proton mass difference.
Once temperature drops below ∼ 1 MeV , electrons are not energetic

enough to overcome the mass difference between neutrons and protons via
e−-capture. Also the e++e− pair creation ceases and thus positron capture on
neutrons, since the photon energy falls below the threshold. At the time when
these processes disappear, neutrinos cannot thermally interact anymore with
the other particles. This phase is called weak freeze-out (or weak decoupling),
from this time on, neutrinos and photons have different temperatures. The

proton to neutron ratio is frozen out at n
p

= exp
(

−∆mc2

kTfrz

)

. From this time

on the ratio can only be changed via beta-decay of the neutrons.
For ultra-relativistic particles, the entropies are given by Sboson = gb

2
4
3
aT 3V

and Sfermion = 7
8

gf

2
4
3
aT 3V . To calculate Tν/Tγ, we have to consider the en-

tropy at Tfrz, which is equal before and after the freeze-out:

(
43

8
+

7

8
∆Nν

)

aT 3
ν V = aT 3

γ V +
7

8

(
6 + 2∆Nν

2

)

aT 3
ν V

⇒ Tγ

Tν

=

[(
43

8
+

7

8
∆Nν

)

− 7

8

(
6 + 2∆Nν

2

)] 1

3

=

(
11

4

) 1

3

. (12)

This ratio is independent of the number of neutrino families. We see that the
photon temperature is higher than the neutrino temperature, that is because
the annihilatinon of the electron/positron pairs heated up the photon bath.
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Since ui,bosons = gi

2
uγ and ui,fermions = 7

8
gi

2
uγ, we can write

utot = aT 4
γ +

7

8

(
6 + 2∆Nν

2

)

aT 4
ν

=

(

1 +

(
21 + 7∆Nν

8

)(
Tν

Tγ

)4
)

aT 4
γ . (13)

Plugging (12) in (13), we finally get

utot =

[

1 +

(
21 + 7∆Nν

8

)(
11

4

)
−

4

3

]

︸ ︷︷ ︸
g
2

aT 4
γ (14)

and therefore, the new value for g after the weak freeze-out is:

g = 2

[

1 +

(
21 + 7∆Nν

8

)(
11

4

)
−

4

3

]

. (15)

Plugging in the numbers in (15) shows that g drops from 10.75 to 3.3626
(Nν = 3) respectively from 12.5 to 3.817 (Nν = 4). The steep drop in g is
illustrated in Fig. 1.

Making use of the adiabatic invariant of the photon gas and the expression
for the expansion rate, one gets a relation between time and temperature
(after the phase transitions) for the photon gas:

t =

(
3c2

16πGa

) 1

2

g−
1

2 T−2

⇒ T =

(
3c2

16πGa

) 1

4

g−
1

4 t−
1

2 , (16)

with a = 4σ
c

= 7.5657× 10−16, G = 6.67259× 10−11. Plugging in g from (15)
leads to the important relation:

T =

(
3c2

16πGa

) 1

4

(

2

[

1 +

(
21 + 7∆Nν

8

)(
11

4

)
−

4

3

])
−

1

4

t−
1

2 . (17)

This relation will be needed as input parameter for the nucleosynthesis
network code.
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Figure 1: Evolution of g during freeze-out

The next step is to calculate the weak freeze-out temperature. We can
guess that it will be between T = 1.29 MeV (mass difference between neu-
tron and protons) and T = 0.511 MeV (mass of electron). Finding this
temperature Tfrz would require a self-consistent numerical calculation, using
a network code which can handle weak reactions. Since our code is not able
to do this, an analytical approximation is used (see e.g. [4]). The freeze-out
of a reaction means that the expansion rate H(T ) becomes larger than the
scattering rate Λscatt(T ). So, at T = Tfrz, we have the condition

H(Tfrz) ⋍ Λscatt(Tfrz) , (18)

H =

√

8πρ (T )

3M2
p

≃ 1.66g
1

2 T 2M−1
p ,

Λscatt =
7

60
π
(
1 + 3g2

A

)
G2

FT 5 ,

where gA ≈ 1.26, GF = 1.166 × 10−5 GeV −2 and Mp = 1.2209 × 1019

GeV c−2. Using condition (18) leads to
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Tfrz =





√
8
90

π3g
1

2

7
60

π (1 + 3g2
A)G2

F Mp





1/3

≈

(
0.785

G2
FMp

)1/3

g
1

6 . (19)

Unfortunately, (19) leads to a value that is too high (∼ 1.157 MeV for
Nν = 3) compared to literature values (commonly around 0.8 MeV [2]). But

since we know Tfrz ∝ g
1

6 (g from (10)), we can determine Tfrz requiring that
the assumption n/p = 1/6 (Nν = 3) is fulfilled:

exp

(−1.293 MeV

Tfrz

)

=
1

6

⇒ Tfrz = 0.7216 MeV . (20)

Using the proportionality Tfrz ∝ g
1

6 , we can write

T
(3+∆Nν)
frz = T

(3)
frz

(
g(Nν=3+∆Nν)

g(Nν=3)

) 1

6

= T
(3)
frz

(

1 +
7

43
∆Nν

) 1

6

(21)

This means that the weak freeze-out occurs at a higher temperature, the
more additional neutrino families we have (e.g. Tfrz = 0.7400 MeV for
Nν = 4). Plugging in (21) in (11), we can calculate the ratio n/p (∆Nν) at
the freeze-out:

n

p
= exp




−1.293 MeV

T
(3)
frz

(
1 + 7

43
∆Nν

) 1

6



 . (22)

For example, this ratio (= 0.1666 for Nν = 3 as we assumed) increases to
≈ 0.174 for Nν = 4.

The last parameter to be determined is the time when the freeze-out
occurs. This can be done using (17) and (21):

tstart =





Tfrz·10
6

k
(

3c2

16πGa

) 1

4 g−
1

4





−2

. (23)

Together with (17), (23) describes a behavior as illustrated in Fig. 2.
The higher pressure of the plasma resulting from additional neutrino fam-

ilies is leading to an accelerated expansion. In literature, one defines a di-
mensionless cosmic ”speed-up” factor ξ = Hnew/Hstd, where H denotes the
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Figure 2: Temperature behavior near weak freeze-out for different neutrino
numbers, starting at Tfrz.

Hubble parameter Ṙ/R. The expansion rate itself is given by the solutions
of the Friedmann equations and is ∝ √

ρ ∝ g. So the speed-up factor is
therefore:

ξ =
√

1 + 7∆Nν/43 . (24)

The strength of the (S)BBN is the fact that it mainly depends (besides
Nν) only on one free parameter, the baryon-to-photon ratio η = nb

nγ
, with

nγ = 2.404 k3T 3

π2h3c3
. Therefore, the baryon density ρb and the number density

nbar are

nbar = η · nγ = 2.404 · η k3T 3

π2h3c3
,

ρb = nbmu = 3.376 × 104ηT 3
9 gcm−3 . (25)

This is true if we neglect the small mass difference between proton and neu-
tron compared to the atomic mass unit. The parameter η10 ≡ η × 1010 has
long been assumed to be around ∼ 4, but since data from WMAP has been
analyzed [11], it is more likely that η10 ≈ 6 (see section 5).

To summarize: We have a set of input parameters for our network code
to calculate primordial abundances. They are:
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• η (from WMAP) ,

• Nν ,

• T9(t) from (17) ,

• ρb(t) from (25) ,

• initial n/p (t = tstart) from (22) .

Table 1 shows the most important numerical values of some parameters,
computed for the cases Nν = 2, 3, 4 and 5

Table 1: Some numerical values of the equations discussed in section 2.2

Nν gbefore gafter Tfrz[MeV ] tstart[s] n/p (tstart)
2 9.00 2.908 0.701 2.894 0.158
3 10.75 3.363 0.722 2.536 0.167
4 12.50 3.817 0.740 2.264 0.174
5 14.25 4.271 0.756 2.049 0.181

3 Big Bang nucleosynthesis beyond the stan-

dard model

3.1 Numerical treatment

In general, nucleosynthesis calculations are divided into two categories, (a)
nucleosynthesis during the hydrostatic burning stages of stellar evolution
and (b) nucleosynthesis in explosive events. The difference is obvious: in
(a), temperature and pressure are given by an equilibrium condition, while in
(b), those 2 parameters result from hydrodynamics (i.e. supernovae, Hubble-
expansion...). Of course, our system belongs to the category (b), since the
solutions of the Friedmann equations (3) - (5) determines temperature and
pressure of this non-equilibrium scenario (see Eq. (17) and (25)) . Let us
now examine how nuclear reaction rates are calculated, although strongly
simplified here (see [10] for more details).

Consider two types of particles i and j, with number densities ni and nj .
The cross section for the reaction i(j, o)m at a given relative velocity v is
defined by

σ =
number of reactions target−1 sec−1

flux of incoming projectiles
=

r/ni

njv
. (26)
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The number of reactions per sec, r, and cm−3 is then given by

ri;j =

∫

σ · |−→vi −−→vj | dnidnj , (27)

where dni and dnj denote the statistical distribution of the particles. For nu-
clei in our astrophysical plasma, we use the Maxwell-Boltzmann distribution

dnj = nj(
mj

2πkT
)3/2exp(−

mjv
2
j

2kT
)d3vj

= njΦ(−→vj )d
3vj .

We then find

ri;j = ninj

∫

σ(|−→vi −−→vj |) |−→vi −−→vj |Φ(−→vi )Φ(−→vj )d
3vid

3vj ,

ri;j =: ninj

∫

〈σv〉i;j . (28)

Doing some variable transformations allows us to express 〈σv〉i;j with an
energy integral, which only depends on the temperature T

〈σv〉(T ) =

(
8

µπ

)1/2
1

kT 3/2

∫
∞

0

Eσ(E) exp(−E/kT )dE . (29)

To obtain the nuclear reaction rate, we have to know the cross section σ(E),
either from experiments, theoretical models or relations like e.g. detailed
balance for reverse reactions etc..

The next step is to consider other reactions than fusion, like photodisinte-

gration, lepton captures, and β
+

− -decays. For photodisintegration, we again
start with (27), but then use the Planck distribution for dnγ.

riγ = niλi;γ,o(T ) (30)

Here, the ”decay”-constant λ only depends on temperature, since nγ ∝ T 3.
Analogous, we get an expression for electron/positron-capture

ri;e = niλi;e(ρYe, T ) . (31)

Notice that λ depends on temperature and the electron abundance Ye (in this
report, Yi always denote abundance while Xi denote mass fraction). Finally,
we obtain a similar expression for normal decays like alpha/beta - decays.
Using λi = ln(2)/τ1/2, the reaction rate simply reads

ri = λini . (32)
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Neutrino reactions would be treated similarly, but they are not implemented
in the used code. To actually calculate the abundances of the nuclei, we
use ( δni

δt
)ρ = ri;j and plug in the definition of relative abundance Yi = ni

ρNA
.

Like that, we can merge all the reactions discussed above into one set of
differential equations for each nucleus i

Ẏi =
∑

j

N i
jλjYj +

∑

i,k

N i
j,k

1 + δjk
ρNA〈σv〉j;kYjYk . (33)

The term δjk is to avoid double counting reactions between 2 identical nuclei.
N i is the number of particles created/destroyed in a reaction. Eq. (33) is
numerically solved by a finit difference method

~Y (t + ∆t) − ~Y (t)

∆t
= (1 − Θ)~̇Y (t + ∆t) + Θ~̇Y (t) . (34)

Using for instance Θ = 0, (34) represents the implicit backward Euler method,
which then makes (34) identical to

~Z(t + ∆t) ≡
~Y (t + ∆t) − ~Y (t)

∆t
− ~̇Y (t + ∆t) . (35)

This can be solved using the Newton-Raphson method. The change in abun-
dance is then

∆~Y =

(

δ ~Z(t + ∆t)

δ~Y (t + ∆t)

)
−1

~Z . (36)

Where δ ~Z

δ~Y
is the Jacobian of ~Z. Iteration continues until ~Y (t+∆t) converges.

In our code the timestep is dynamically coupled to the evolution of the
abundances. At the beginning, ∆t is ≈ 10−9 s, increasing as the Ẏi’s decrease
with time until abundances freeze out.

3.2 Basic BBN reactions

In this chapter, we discuss basic reactions that occur during BBN. For better
understanding of this mechanisms, several calculations have been made using
our code and input parameters (see Fig. (3)-(7)). Our results for the standard
Big Bang are in general agreement with literature values.

As mentioned above, after the weak freeze-out, the n/p ratio decreases
only because of the beta-decay of the neutron. Since photons are energetic
enough, they destroy immediately all the 2H that has been built by neutron
capture on protons. Only after ∼ 150 s when T9 := T/109 K≈ 1.1, a sub-
stantial abundance of 2H exist and nucleosynthesis can proceed. Thus, the
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onset of nucleosynthesis is due to the Q-value of 1H(n, γ)2H (Q=2.3 MeV).
The more neutrino families we have, the earlier begins the production of 2H
(because of the lower temperature), see Fig. 3.

Subsequently, further neutron-, proton- and light nuclei (2H) captures
form heavier nuclei like 3H, 3He and 4He. That is why the abundance of
deuterium reaches its maximum at around t ≈ 250s and then drops quickly.
The reaction chain contains the sequence of two body reactions:

1H(n,γ)2H
2H(p, γ)3He 2H(2He,n)3He 2H(2H,p)3H
3H(2H,n)4He 3H(4He, γ)7Li
3He(n,p)3H 3He(2H,p)4He 3He(4He, γ)7Be
7Li(p,4He)4He 7Be(n,p)7Li

 0
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Figure 3: Time evolution of 2H abundance

Most of the neutrons are finally bound in 4He, because of its large binding
energy (∆4He = 28.3 MeV). Since the gap in the bound nuclei at A=5 and
A=8 inhibits the formation of nuclei beyond A=4, only traces of 7Li and 7Be
are made. Using this fact, the final 4He mass fraction can be approximated
assuming all neutrons being bound to this nucleus

Xα,primordial ≈
2Xn/Xp

1 + Xn/Xp
≈ 0.25 . (37)
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Figure 4: Binding of free neutrons in 4He

Since we have many more protons than neutrons (≈ 1/7 at the time when
nucleosynthesis starts) , many protons remain unbound at the time when
all free neutrons have been captured. That is why 1H is the most abundant
relict of BBN (YH ≈ 0.745). Fig. 5 shows quantitatively the evolution of
abundances of the light elements as result of the reaction listed above.

3.3 Abundance dependence on η

As mentioned before, all of these processes depend mainly (in SBBN) on the
baryon-to-photon ratio η. If we have large η, i.e. a high baryon density,
this leads to a higher number of capture reactions on 2H and 3He. This,
consequently, leads to a higher amount of 4He but leaving of course less 2H
and 3He. The behavior of 7Li is more complex, since it is produced in two
different channels. For low baryon densities, 7Li is produced via 3H(α, γ)7Li,
but at high densities, it is destroyed by 7Li(p, α)4He. On the other hand,
increasing η also leads to overproduction of 7Be because of a higher rate of
3He(α, γ)7Be. This unstable 7Be subsequently decays to 7Li. The minimum
of the 7Li abundance is about 10−10 and lies between 2 < η10 < 4. The
behavior of the abundances with changing η is plotted in Fig. 6 and 7.
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Figure 5: Overview of abundance evolution of all light elements (except
protons) in SBBN for a fixed value of η. Most of the processes occur in the
time between 200s and 400s after BB, and after ∼ 1000s nearly all abundances
reach its final values. Note that the 7Li abundance will still grow with time
due to the decay of 7Be

4 Neutrino-counting with BBN

In this section, we have varied ∆Nν to find a upper limit for the number of
light neutrino families. As already discussed in section 2.2, additional neu-
trino families sensitively affect BBN, especially the 4He abundance. This is
because of (i) earlier weak freeze-out and therefore higher n/p ratio [Eq. (22)]
and (ii) lower temperature after freeze-out [Eq. (17)]. The other elements
that are produced in BBN are not so sensitive to a variation of Nν (see Tab.
2 for final abundances), and additionally, their relics are more difficult to
observe nowadays with sufficient accuracy.
To (i): As seen in Eq. (37), the 4He mass fraction depends on the n/p ratio
at the time when nucleosynthesis starts and not directly on the n/p ratio at
freeze-out. One could argue that with an increasing ∆Nν and therefore the
earlier freeze-out, the neutrons have more time to decay until nucleosynthesis
starts. But tstart only differs by ∼ 0.2s for each additional neutrino family.
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Table 2: Final abundances Yi of BBN. Note that 3H is unstable, so the abun-
dance below denotes the value right after BBN (t ≈ 105 s). The abundance
of 7Li already contains the decayed 7Be. The second table lists the relative
changes of Yi compared to the standard case Nν = 3.

Nuclei Nν = 2 Nν = 3 Nν = 4 Nν = 5
1H 0.7651 0.7460 0.7290 0.7139
2H 2.162E-05 1.996E-05 1.778E-05 1.654E-05
3H ∗ 6.247E-08 5.817E-08 5.212E-08 4.869E-08
3He 8.990E-06 8.684E-06 8.221E-06 7.938E-06
4He 5.873E-02 6.349E-02 6.775E-02 7.150E-02
7Li 2.2225E-10 2.336E-10 2.351E-10 2.407E-10

Nuclei Y Nν=2
i /Y Nν=3

i Y Nν=3
i /Y Nν=3

i Y Nν=4
i /Y Nν=3

i Y Nν=5
i /Y Nν=3

i
1H 1.026 1.000 0.977 0.957
2H 1.083 1.000 0.891 0.829
3H ∗ 1.074 1.000 0.896 0.837
3He 1.035 1.000 0.945 0.914
4He 0.925 1.000 1.067 1.126
7Li 0.951 1.000 1.006 1.030

This is, compared to the neutron half life τ1/2 ≈ 614s, very short and there-
fore this impact is negligible (∆n/p ≈ 10−4), compared to the effect resulting
from Eq. (22). But as can be seen in Fig. 8, the differences in n/p slightly
shrink until nucleosynthesis starts. It is also quite clear that a higher Nν (⇒
more neutrons) leaves less protons at the end of BBN than a low Nν (see
Tab. 2).

To (ii): As derived in section 2.2, the factor in front of t−1/2 in relation (17)
changes due to g(∆Nν). For example, Nν = 4 leads to a factor 12.922 instead
of 13.336 for the standard case. This affects mainly the time when deuterium
starts to build up, but has little effect on the final Xα. As Fig. 9 shows,
a low Nν allows earlier 4He production, but then ceases at around 260 sec
when all ”fuel” has been exhausted. But with a higher Nν , nucleosynthesis
continues for additional ∼ 20s (since there are still free neutrons available),
therefore Xα exceeds the value at low Nν (Fig. 10). Considering all these
effects, one can parameterize Xα with suitable numbers A,B,C and D::

Xα = A + B(Nν − 3) + Cln(η10) + D(τn − 887) . (38)
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Figure 6: 4He production as a function of the baryon density

The recent all-sky, high precision measurement of the cosmic microwave
background anisotropies by WMAP has opened the possibility for new preci-
sion analysis of BBN. Among other cosmological parameters, WMAP derived
the baryon density with unprecedented precision [13] - [14]. The WMAP best
fit assuming a varying spectral index is equivalent to η10,WMAP = 6.14±0.25.
Using this value, my calculations predict a primordial 4He mass fraction (for
standard Big Bang) of Xα = 0.2546+0.0003

−0.0004. But since we want to find a upper
limit for Nν , observational data has to be considered, which is difficult. The
principle is to observe emission lines of HII regions (and other astrophysical
sites) with low metallicity, which means they should be as old (and there-
fore ”primordial”) as possible. One of the biggest problems is to extrapolate
these values to zero metallicity using suitable models of chemical evolution
in stars and galaxies.

The values quoted for the primordial 4He abundance varied considerably
over the last 15 years. The work of Pagel et al. [12] established the analysis
techniques that others were soon the follow. The published results in these
years all lie around 0.228 < Xα < 2.444, strongly depending on the assumed
value of the equivalent width of He absorption lines. But this was not a prob-
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Figure 7: 2H, 3He and 7Li production as function of the baryon density

lem, since back then one believed η10 to be in the narrow range between 2.8
and 4.0 (derived from observational D/H abundances). But since the anal-
ysis of the cosmic microwave background (CMB) became the most reliable
source for baryon density determination, η10 became significantly higher and
therefore a reanalysis of the observed 4He became inevitable. Such a work
from K.A. Olive et al. [11] led to an increased Xα value and also e bigger
error range. A representative result of that analysis is

Xα = 0.249 ± 0.009 (39)

Thus, conservatively, any value of Xα between 0.232-0.258 cannot be ex-
cluded. Consequently, using this constraint on Xα and the lower bound for
η10, the upper limit for Nν becomes

Nν . 3.24 , (40)

based on our calculations. Here, uncertainties in the neutron mean life (small
nowadays) are not considered. Nevertheless, this calculation clearly shows
the unlikeliness of a 4th neutrino family.
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5 Conclusion

Beginning with general cosmology, equations used for BBN have been mod-
ified in such a way that more than 3 neutrino families can be considered.
Using these relations (depending on ∆Nν) as input parameters for a full as-
trophysical network code, the impact of additional light neutrino families has
been discussed (in addition to general BBN mechanisms). It has been found
that additional light neutrino flavors increase the pressure of the plasma,
resulting in a ”speed-up” of cosmic expansion. It could be shown that this
modification in spatial evolution has a significant influence on primordial
abundances, especially on 4He.

Using observational data as a constraint for the primordial 4He mass
fraction Xα, an upper limit for Nν could be determined: Nν . 3.24. As
discussed in section 4, these results strongly depend on how observational
data is interpreted, since with a different value of Xα the constraint on Nν

differs widely.
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